REDUCTION OF β -SULFENYLATED α , β -UNSATURATED KETONES WITH NaBH $_{4}$ -METAL HALIDE ## Takehiko NISHIO and Yoshimori OMOTE Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 300-31 Reduction of β -sulfenylated α,β -unsaturated ketones (1) with sodium borohydride (NaBH₄) in the presence of a catalytic amount of metal halide (CoCl₂ or NiCl₂) gave the saturated ketones (3). However, FeCl₂, FeCl₃, CuI, and CuCl₂ showed no effect in the reduction of 1. We previously reported the smooth conversion of β -sulfenylated α , β -unsaturated ketones ($\underline{1}$) to α , β -unsaturated ketones ($\underline{2}$) via selective 1,2-reduction, followed by hydrolysis (eq. 1). $$R^{1} \xrightarrow{\text{C}-\text{CH}=\text{C}(R^{2})} SR^{3} \xrightarrow{\text{1) LiAlH}_{4} \text{ or NaBH}_{4}} R^{1} \xrightarrow{\text{CH}=\text{CH}-\text{C}-R^{2}}$$ $$\frac{1}{2) \text{ H}^{+}} \xrightarrow{\text{2}}$$ $$(1)$$ It is well known that the regiospecific reduction of the conjugated enones is difficult to perform. It has been shown recently that the addition of metal halides to the conjugated enone and NaBH_4 affords selective reduction compounds. ^{2,3)} A number of metal halides and the hydride reducing reagents, which are claimed to give selective addition products, have been investigated in recent years. ⁴⁾ We report here its application to the reduction of β -sulfenylated α , β -unsaturated ketones (1). When 3-ethylthio-1-phenylbut-2-en-1-one (1a) was reduced with NaBH_4 in the presence of cobalt(II) chloride in MeOH and then the reaction products were decomposed under acidic conditions, 1-phenylbutan-1-one (3a), which was 1,4-reduction and desulfenylation product, was obtained. ⁵⁾ Reduction of 1a with NaBH_4 in the presence of nickel chloride also gave 3a. However, NaBH_4 -FeCl₂, NaBH_4 -FeCl₃, NaBH_4 -CuI, NaBH_4 -CuCl₂, and LiAlH_4 -CuCl₂ showed no activity at all toward the reduction of 1a. Similarly, other β -sulfenylated α , β -unsaturated ketones (1b-f) were reduced with NaBH_4 -CuCl₂ to give the saturated ketones (3b, e, f). The results are summarized in Table 1. In order to know catalysis of the metal halides, 1.0:2.0:0.1 ratio of \underline{la} -NaBH $_4$ -metal halide was used in experiment (runs 2, 4, 12, 14, 16, 18 and 20). The results show clearly that β -sulfenylated α,β -unsaturated ketones (\underline{la} - \underline{f}) can be reduced to the saturated ketones ($\underline{3a}$ - \underline{b} , \underline{e} - \underline{f}) by the combination of NaBH $_4$ with a catalytic amount of CoCl $_2$ or NiCl $_2$. The mechanism for the formation Table 1. The Yields of the Saturated Ketones (3) | Run | | Compound | | | Metal Molar Ratio | | | | | io | | | Yields (%) a) | | |-----|-----------|----------|-------|-------------------|--------------------------|---|-----|-------------------|---|---------|--------|-------|--|-----------------------------| | | | R^1 | R^2 | \mathbb{R}^3 | halide | 1 | : N | IaBH ₄ | : | Metal 1 | halide | 3 | Other products | $\underline{1}$ (recovered) | | 1 | <u>la</u> | Ph | Me | Et | coc1 ₂ | 1 | : 0 | .5 | : | 0.1 | | 8.0 | | 86.5 | | 2 | <u>la</u> | Ph | Me | Et | ∞ Cl ₂ | 1 | : | 2 | : | 0.1 | | 71.0 | PhOH (OH) CH2CH (Me) SEt | 8.0 | | 3 | <u>la</u> | Ph | Me | Et | CoCl ₂ | 1 | : | 2 | : | 2 | | 47.0 | (<u>4</u>) 15.5 <u>2</u>
<u>4</u> trace | 44.0 | | 4 | <u>la</u> | Ph | Ме | Et | NiCl ₂ | 1 | : | 2 | : | 0.1 | | 68.5 | <u>4</u> 4.0 | 23.5 | | 5 | <u>la</u> | Ph | Me | Et | NiCl ₂ | 1 | : | 2 | : | 2 | | 50.0 | 4 4.5 | 44.0 | | 6 | <u>la</u> | Ph | Me | Et | FeCl ₂ | 1 | : | 2 | : | 2 | | trace | | quant. | | 7 | <u>la</u> | Ph | Me | Et | FeCl ₃ | 1 | : | 2 | : | 0.4 | | trace | PhCH=CHCOMe $(\underline{5})$ 6.5 | 91.5 | | 8 | <u>la</u> | Ph | Me | Et | FeCl ₃ | 1 | : | 2 | : | 2 | | trace | 5 trace | 79.5 | | 9 | <u>la</u> | Ph | Me | Et | CuI | 1 | : | 2 | : | 0.1 | | trace | 5 trace | quant. | | 10 | <u>la</u> | Ph | Me | Et | CuI | 1 | : | 2 | : | 2 | | trace | 5 trace | quant. | | 11 | <u>la</u> | Ph | Me | Et | CuCl ₂ | 1 | : | 2 | : | 0.1 | | trace | 5 trace | quant. | | 12 | <u>lb</u> | Ph | Н | Et | CoCl ₂ | 1 | : | 2 | : | 0.1 | | 70.5 | PhCH(OH)CH2CH2SEt (6) | 13.0 | | 13 | <u>lb</u> | Ph | Н | Et | CoCl ₂ | 1 | : | 2 | : | 2 | | 63.0 | 15.0
<u>6</u> 32.0 | 1.0 | | 14 | <u>lb</u> | Ph | Н | Et | NiCl ₂ | 1 | : | 2 | : | 0.1 | | 61.5 | <u>6</u> 24.0 | trace | | 15 | <u>lc</u> | Ph | Me | \mathtt{Pr}^{n} | $CoCl_2$ | 1 | : | 2 | : | 2 | | 57.0 | | 30.0 | | 16 | <u>ld</u> | Ph | Me | Ph | coc1 ₂ | 1 | : | 2 | : | 0.1 | | 44.0 | PhSSPh (<u>7</u>) 34.5 | 56.0 | | 17 | <u>ld</u> | Ph | Me | Ph | coc1 ₂ | 1 | : | 2 | : | 2 | | 78.5 | <u>7</u> 59.5 | 21.0 | | 18 | <u>le</u> | Ph | Ph | Et | coc1 ₂ | 1 | : | 2 | : | 0.1 | | 84.5 | | 10.0 | | 19 | <u>le</u> | Ph | Ph | Et | CoCl ₂ | 1 | : | 2 | : | 2 | | 75.0 | | 15.5 | | 20 | <u>lf</u> | Me | Ph | Et | CoCl ₂ | 1 | : | 2 | : | 0.1 | | 73.0 | MeCH=CHCOPh (8) 2.5 | 15.5 | | 21 | <u>lf</u> | Me | Ph | Et | CoCl ₂ | 1 | : | 2 | : | 2 | | 19.5 | <u>8</u> 21.0 | 47.5 | a) The yields were determined by G.L.C.. of the saturated ketones (3) is not clear at present but the formation of 3 is presumed to proceed via selective 1,4-reduction and desulfenylation of 1 on reduction by NaBH₄-metal halide. ## References and notes - 1) T. Nishio and Y. Omote, Chem. Lett., 1979, 365. - 2) J.L.Luche, J. Am. Chem. Soc., <u>100</u>, 2226 (1978). - 3) J.L.Luche, L.Rodriguez-Hahn, and P.Crabbe, J. Chem. Soc. Chem. Commun., 1978, 601. - 4) E.g., E.C.Ashby and J.J.Lin, J. Org. Chem., $\underline{43}$, 2567 (1978) and references therein. - 5) In a typical experiment, a solution of NaBH₄ (76 mg, 2 mmol) in MeOH (5 ml) was added drop by drop into a stirred solution of 3-ethylthio-l-phenylbut-2-en-l-one (<u>la</u>, 206 mg, 1 mmol) and CoCl₂ (258 mg, 2 mmol) in MeOH (10 ml) at room temperature and the reaction mixture was stirred for an additional 3 h. Then the reaction mixture was decomposed with 10% aqueous HCl solution (5 ml) and extracted with dichloromethane. The product (<u>3a</u>) was purified through a silica gel column chromatography eluted with benzene.